
NetLogger

Future Technologies Group

NetLogger: Distributed System
Monitoring and Analysis

Ernest Orlando Lawrence Berkeley National Laboratory

Brian L. Tierney

NetLogger

Outline

• Overview
– What is NetLogger?
– What is NetLogger good for?
– What is NetLogger not good for?

• NetLogger Components
– message format
– instrumentation library
– system monitoring tools
– visualization tools

• Case Studies
– Radiance luminosity application
– Parallel remote data server (DPSS)

• Current Work
• Current Issues

NetLogger

Overview

• The Problem
– When building distributed systems, we often

observe unexpectedly low performance
• the reasons for which are usually not obvious

– The bottlenecks can be in any of the following
components:

• the applications
• the operating systems
• the disks or network adapters on either the sending or

receiving host
• the network switches and routers, and so on

• The Solution:
• Highly instrumented systems with precision timing

information and analysis tools

NetLogger

Bottleneck Analysis

• Distributed system users and developers often
assume the problem is network congestion
– This is often not true

• In our experience tuning distributed applications,
performance problems are due to:
– network problems: 40%
– host problems: 20%
– application design problems/bugs: 40%

• 50% client , 50% server

• Therefore it is equally important to instrument the
applications

NetLogger

NetLogger Toolkit

• We have developed the NetLogger Toolkit

– A set of tools which make it easy for distributed
applications to log interesting events at every
critical point

– NetLogger also includes tools for host and
network monitoring

• The approach is novel in that it combines network,
host, and application-level monitoring to provide a
complete view of the entire system

NetLogger

Why “NetLogger”?

• The name “NetLogger” is somewhat misleading
– Should really be called: “Distributed

Application, Host, and Network Logger”

• “NetLogger” was a catchy name that stuck

NetLogger

When to use NetLogger

• When you want to:
– do performance/bottleneck analysis on

distributed applications
– determine which hardware components to

upgrade to alleviate bottlenecks
– do real-time or post-mortem analysis of

applications
– correlate application performance with system

information (ie: TCP retransmission's)
• works best with applications where you can follow

a specific item (data block, message, object)
through the system

NetLogger

When NOT to use NetLogger

• Analyzing massively parallel programs (e.g.: MPI)
– Current visualization tools don’t scale beyond

tracking about 20 types of events at a time

• Analyzing many very short events
– system will become overwhelmed if too many

events
– we typically use NetLogger to monitor events

that take > .5 ms
– e.g: probably don’t want to use to instrument

the UNIX kernel

NetLogger

NetLogger Components

• NetLogger Toolkit contains the following
components:
– NetLogger message format
– NetLogger client library
– NetLogger visualization tools
– NetLogger host/network monitoring tools

• Additional critical component for distributed
applications:
– NTP (Network Time Protocol) is required to

synchronize the clocks of all systems

NetLogger

NetLogger Message Format

• We are using the IETF draft standard Universal Logger
Message (ULM) format (http://www.ietf.org/internet-
drafts/draft-abela-ulm-05.txt):

– a list of “field=value” pairs

– required fields: DATE, HOST, PROG, and LVL

• LVL is the severity level (Emergency, Alert, Error, Usage,
etc.)

– followed by optional user defined fields

• NetLogger adds these required fields:
• NL.EVNT, a unique identifier for the event being logged

—e.g.: SERVER_IN, VMSTAT_USER_TIME,
NETSTAT_RETRANSSEG

NetLogger

NetLogger Message Format

• Sample NetLogger ULM event:
DATE=19980430133038.55784 HOST=foo.lbl.gov
PROG=testprog LVL=Usage NL.EVNT=SEND_DATA
SEND.SZ=49332

– This says program named testprog on host
foo.lbl.gov performed event named SEND_DATA,
size = 49332 bytes, at the date/time given

• User-defined data elements (any number) are used to
store information about the logged event - for example:

• NL.EVNT=SEND_DATA SEND.SZ=49332
—the number of bytes of data sent

• NL.EVNT=NETSTAT_RETRANSSEGS NS.RTS=2
—the number of TCP retransmits since the previous event

NetLogger

Other Formats

• We’d like to convince everyone to use the
ULM/NetLogger format for logging
– This way we can all share log file management

and visualization tools
• Probably not realistic

– Working on filters to convert the following
to/from NetLogger format

• Pablo, NWS. Surveyor?, others?

– Also working on a binary representation for
more efficient use of network and disk

• If ULM is not adequate, whose format is better?

NetLogger

NetLogger API

• NetLogger Toolkit includes application libraries for
generating NetLogger messages
– Can send log messages to:

• file
• host/port (netlogd)
• syslogd
• memory, then one of the above

• C, C++, Java, Perl, and Python APIs are currently
supported

NetLogger

NetLogger API

• Only 6 simple calls:
– NetLoggerOpen()

• create NetLogger handle, specify logging destination

– NetLoggerWrite()
• get timestamp, build NetLogger message, send to destination

– NetLoggerGTWrite()
• must pass in results of Unix gettimeofday() call

– NetLoggerFlush()
• flush any buffered message to destination

– NetLoggerSetLevel()
• set ULM severity level

– NetLoggerClose()
• destroy NetLogger handle

NetLogger

Sample NetLogger Use

 lp = NetLoggerOpen(method, progname, NULL,
hostname, NL_PORT);

while (!done)
{

 NetLoggerWrite(lp, "EVENT_START",
"TEST.SIZE=%d", size);

 /* perform the task to be monitored */
 done = do_something(data, size);

 NetLoggerWrite(lp, "EVENT_END");
}
NetLoggerClose(lp);

NetLogger

NetLogger Host/Network Tools

• Wrapped UNIX network and OS monitoring tools to log
“interesting” events using the same log format
– netstat (TCP retransmissions, etc.)
– vmstat (system load, paging, etc.)
– iostat (disk activity)
– ping

• These tools have been wrapped with Perl or Java
programs which:
– parse the output of the system utility
– build NetLogger messages containing the results

NetLogger

NetLogger Network Tools

• NetLogger tool for SNMP queries
– Usage: nl_snmpget hostname object [port]

• Examples:
– host monitoring

• nl_snmpget unix_host sysName

— Returns: system.sysName.0 = wakko.lbl.gov

– router monitoring
• nl_snmpget routername ipInDelivers 3

—Returns: tcp.tcpInErrs.3 = 4000

– ATM switch monitoring
• nl_snmpget switchname sonetLineFEBEs

• nl_snmpget switchname portTransmittedCells

NetLogger

NetLogger Events

• Logged events are correlated with system
behavior to characterize the performance of the
system during actual operation

– facilitates bottleneck identification

• Using “life-lines” to visualize the data flow is the
key to easy interpretation of the results.

• We believe this type of monitoring is a critical
component to building reliable high performance
data intensive systems

NetLogger

NetLogger Event “Life Lines”

NetLogger

Event Id

• In order to associate a group of events into a
“lifeline”, you must assign an event ID to each
NetLogger event

• Sample Event Ids
– file name
– block ID
– frame ID
– user name
– host name
– etc.

NetLogger

Sample NetLogger Use

lp = NetLoggerOpen(method, progname, NULL, hostname, NL_PORT);
for (i=0; i< num_blocks; i++) {

NetLoggerWrite(lp, “START_READ”,
“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);

read_block(i);
NetLoggerWrite(lp, “END_READ”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
NetLoggerWrite(lp, “START_PROCESS”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
process_block(i);
NetLoggerWrite(lp, “END_PROCESS”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
NetLoggerWrite(lp, “START_SEND”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
send_block(i);
NetLoggerWrite(lp, “END_SEND”,

“BLOCK_ID=%d BLOCK_SIZE=%d”, i, size);
}
NetLoggerClose(lp);

NetLogger

NetLogger Visualization Tools

• Exploratory, interactive analysis of the log data has
proven to be the most important means of identifying
problems

– this is provided by nlv (NetLogger Visualization)

• nlv functionality:
– can display several types of NetLogger events at

once
– user configurable: which events to plot, and the

type of plot to draw (lifeline, load-line, or point)
– play, pause, rewind, slow motion, zoom in/out, and

so on
– nlv can be run post-mortem or in real-time

• real-time mode done by reading the output of netlogd as it
is being written

NetLogger

NLV Graph Types

• nlv supports graphing of “points”, “load-lines”, and
“lifelines”

NetLogger

NLV

NetLogger

NLV Zoom Feature

NetLogger

NLV with lifeline, load-line, and
point events

NetLogger

Example NLV Configuration

display server data as a “lifeline”
set +SERVER_READ
type line

lifeline constructed from messages from the same client
and server

id [CLIENT_HOST DPSS.SERV]

messages with the same DPSS.SERV get the same color
group DPSS.SERV

[+APP_SENT +DPSS_SERV_IN +DPSS_START_READ
+DPSS_END_READ +DPSS_START_WRITE +APP_RECEIVE]

NetLogger

Network Time Protocol

• For NetLogger timestamps to be meaningful, all
systems clocks must be synchronized.

– NTP is used to synchronize time of all hosts in
the system.

—NTP is from Dave Mills, U. of Delaware
(http://www.eecis.udel.edu/~ntp/)

– Must have NTP running on one or more primary
servers, and on a number of local-net hosts,
acting as secondary time servers

– typically get clock synchronized to within 1
millisecond of each other

NetLogger

How to Instrument Your
Application

• You’ll probably want to add a NetLogger event to the
following places in your distributed application:
– before and after all disk I/O
– before and after all network I/O
– entering and leaving each distributed component
– before and after any significant computation

• e.g.: an FFT operation

– before and after any significant graphics call
• e.g.: certain CPU intensive OpenGL calls

• This is usually an iterative process
– add more NetLogger events as you zero in on the

bottleneck

NetLogger

Example 1: Parallel Visualization
Application

• Radiance is a suite of programs for the analysis
and visualization of lighting in design.
– Input includes the scene geometry, materials, luminance,

time, date, and sky conditions

• Radiance has been adapted at LBNL to run on
multiple UNIX workstations
– The image is broken into many small pieces, and

illumination calculations are performed for each piece
independently

• Used NetLogger to measure:
– overall system throughput,
– latency for each stage of getting data, processing it, and

writing it
– patterns of latency which reflect resource contention and

other interaction delays

NetLogger

Client

 Master

= m onitoring point

*

*

*

W orker:
Projection

W orker: Ray
Tracer

W orker:
Projection

W orker: Ray
Tracer

W orker:
Projection

W orker: Ray
Tracer

*
*
* *

*
*
*
**

Radiance Instrumentation Points

NetLogger

NetLogger Radiance Results:
Before Tuning

NetLogger

NetLogger Radiance Results:
After Tuning

NetLogger

Example 2: Parallel Data Block
Server

• The Distributed Parallel Storage Server (DPSS)
– provides high-speed parallel access to remote

data
– Unique features of the DPSS:

• On a high-speed network, can actually access remote
data faster that from a local disk

—57 MB/sec vs 10 MB/sec

• NetLogger was used for performance tuning and
debugging of the DPSS

NetLogger

DPSS Cache Architecture

C lien t A pp lica tion

P ara lle l
D isks

D P S S S e rv e r

P ara lle l
D isks

D P S S S e rv e r

P ara lle l
D isks

D P S S S e rv e r

D P S S M aste r

d a ta b lo ck s

d a ta b lo ck s

d a ta b lo ck s
L o g ic a l B lo c k

R e q u e s ts

Ÿ log ic a l to p h y s ic a l
b lo c k lo o ku p

Ÿ a c ce s s c o n tro l
Ÿ loa d ba la nc in g

P hy s ica l B lo c k
R e q u e s ts

NetLogger

DPSS Instrumentation

Client
Application

Shared M em ory Cache

Block
Request
Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

Disk
Read

Thread

DPSS M aster

from o ther D P S S
servers

*

= monitoring point

DPSS Data Server

to o ther

DPSS servers

Block
W riter
Thread

to o ther
 c lien ts

Disk Disk DiskDisk

*

*
*

*

**

*

*

*

**

NetLogger

NetLogger Results for the DPSS

NetLogger

NetLogger Results for the DPSS
over a WAN

NetLogger

NLV of DPSS with a HENP client

NetLogger

Current Work: JAMM

• Java Agents for monitoring and management
(JAMM)
– Java RMI-based agents are used to start up

NetLogger versions of system tools
• netstat, vmstat, uptime, xntpdc, ping, netperf,

etc.

• Monitoring can be based on application use
– e.g.: only do monitoring while a client is

connected to a server

• For more info see: http://www-didc.lbl.gov/JAMM/

NetLogger

Current Work

• NetLogger enhancements:
– adding Globus security

• plan to use GlobusIO for sending NetLogger
messages to netlogd

– binary transmission/storage format

• Deployment plan
– SNMP-based monitoring goes on all the time
– application/host monitoring triggered by the

application/user

NetLogger

Open Issues

• Log collection/archive service
– netlogd to a file not adequate, need to send

monitoring data to some kind of database (LDAP?)
• multicast ability?

– Need to simultaneously send to archive and to one
or more nlv session

• how to correlate archived monitoring data with network
configuration data? (i.e.: traceroute)

• how to map application traffic to a specific
switch/router port?

• Integration with other tools
– Pablo, NWS, Surveyor, etc.

NetLogger

 Getting NetLogger

• Source code and some precompiled binaries are
available at:
– http://www-didc.lbl.gov/NetLogger

• Solaris, Linux, and Irix versions of nlv are
currently supported

